Resit / Numerical Mathematics 1 / July 11th 2022, University of Groningen

A simple calculator is allowed.
The exam is closed book.
All answers need to be justified using mathematical arguments.
Total time: 2 hours +20 minutes (if special facilities were requested in advanced)

Exercise 1 (9 points)

Consider a function $f(x) \in C^{2}([a, b])$. We define the numerical integration rule:

$$
\tilde{I}(f)=(b-a) f(\alpha)
$$

with $\alpha \in[a, b]$.
(a) 3 Determine the degree of exactness for all possible values of α. Prove each of the results. Do not compute/use error bounds here.
For $\alpha=(a+b) / 2$ we have the midpoint rule, and therefore it can be easily shown that linear functions can be integrated exactly ($0.5 \mathbf{p t}$), but not quadratic functions ($0.5 \mathbf{p t}$). For $\alpha \neq$ $(a+b) / 2$, constants can be integrated exactly (1 pt) but not linear functions (1 pt)
(b) 6 Prove an error bound for

$$
\tilde{I}(f)-\int_{a}^{b} f(u) d u
$$

for all values of α. The error bound needs to depend on a, b, α and some derivative(s) of the function f. How does this bound compare with your results in the question before?
First, we need to do a Taylor expansion for approximating the the function which results in (1 pt):

$$
f(u)=f(\alpha)+(u-\alpha) f^{\prime}(\alpha)+\frac{(u-\alpha)^{2}}{2} f^{\prime \prime}(\eta)
$$

and therefore replacing and computing the integral (1.5 pt):

$$
\int_{a}^{b} f(u) d u=f(\alpha)(b-a)+f^{\prime}(\alpha)\left(b^{2} / 2-\alpha b-a^{2} / 2+\alpha a\right)+f^{\prime \prime}(\eta) \int_{a}^{b} \frac{(u-\alpha)^{2}}{2}
$$

Note that for $\alpha=(b+a) / 2$, the first term is zero, leading to the error bound (1 pt):

$$
\frac{(b-a)^{3}}{24} \max _{\eta \in[a, b]}\left|f^{\prime \prime}(\eta)\right|
$$

Therefore, this result is consistent with the computation of degree of exactness since it means that linear functions are integrated exactly ($0.5 \mathbf{~ p t}$)
For other values of α, the first term is non-zero. Therefore, the error bound should be re-written using Taylor theorem with order 1, leading to the error bound (1 pt)

$$
\max _{\xi \in[a, b]}\left|f^{\prime}(\xi)\right|\left((b-\alpha)^{2} / 2-(a-\alpha)^{2} / 2\right)
$$

Therefore, this result is consistent with the computation of degree of exactness since it means that constant functions can be integrated exactly (1 pt).

Resit / Numerical Mathematics 1 / July 11th 2022, University of Groningen
A simple calculator is allowed.
The exam is closed book.
All answers need to be justified using mathematical arguments.
Total time: 2 hours +20 minutes (if special facilities were requested in advanced)

Exercise 2 (9 points)

Consider the root-finding problems for the functions $f(x)=\cos (x+\pi / 2)$ and $g(x)=\cos (x)-1$. Both have roots at $x=0$.
(a) 4 Compute the Newton iteration function $f(x)$, and compute the first three derivatives of the iteration function

$$
\begin{gathered}
\phi_{f}(x)=x-\frac{\sin (x)}{\cos (x)} \quad(\mathbf{1} \mathbf{~ p t}) \\
\phi_{f}^{\prime}(x)=1-\frac{\cos (x)}{\cos (x)}-\frac{\sin ^{2}(x)}{\cos ^{2}(x)}=-\tan ^{2}(x) \quad(\mathbf{1} \mathbf{~ p t}) \\
\phi_{f}^{\prime \prime}(x)=-2 \frac{\tan (x)}{\cos ^{2}(x)} \quad(\mathbf{1} \mathbf{~ p t}) \\
\phi_{f}^{\prime \prime \prime}(x)=-2 \frac{1}{\cos ^{4}(x)}-4 \frac{\tan (x)}{\cos ^{3}(x)} \sin (x) \quad(\mathbf{1} \mathbf{~ p t})
\end{gathered}
$$

(b) $\sqrt{3}$ Using Taylor expansions of the Newton iteration function ϕ_{f} of the function f at the root, determine the order of convergence for the Newton iterations $x^{(k)}=\phi_{f}\left(x^{(k-1)}\right)$.
First, note that $\phi_{f}^{\prime}(0)=\phi_{f}^{\prime \prime}(0)=0(\mathbf{1} \mathbf{p t})$, but $\phi_{f}^{\prime \prime}(0) \neq 0(\mathbf{1} \mathbf{~ p t})$. Doing a Taylor expansion of $x^{(k)}$ around $0(\mathbf{1} \mathbf{~ p t)}$:

$$
x^{(k+1)}=\phi_{f}\left(x^{(k)}\right)=\phi_{f}(0)+\phi_{f}^{\prime}(0)\left(x^{(k)}\right)+\phi_{f}^{\prime \prime}(0)\left(x^{(k)}\right)^{2} / 2+\phi_{f}^{\prime \prime \prime}(\eta)\left(x^{(k)}\right)^{3} / 6=\phi_{f}^{\prime \prime \prime}(\eta)\left(x^{(k)}\right)^{3} / 6
$$

hence the order of convergence to zero is $3(\mathbf{1} \mathbf{p t})$.
(c) 2 Compute the Newton iteration function $g(x)$. What is the order of convergence to the root of these iterations, and why?

$$
\phi_{g}(x)=x+\frac{\cos (x)-1}{\sin (x)} \quad(\mathbf{1} \mathbf{~ p t})
$$

Since the derivative of $g(x)$ is zero at the root, the order of convergence will be just linear ($\mathbf{1} \mathbf{~ p t)}$.

Resit / Numerical Mathematics 1 / July 11th 2022, University of Groningen
A simple calculator is allowed.
The exam is closed book.
All answers need to be justified using mathematical arguments.
Total time: 2 hours +20 minutes (if special facilities were requested in advanced)

Exercise 3 (9 points)

Consider the ODE for the functions $y(t)$:

$$
y^{\prime}=f(y, t), y(0)=y_{0}
$$

We define a numerical approximation for this ODE as follows:

$$
\begin{equation*}
y_{n+1}=y_{n}+\frac{h}{2}\left(f\left(y_{n}, t_{n}\right)+f\left(y_{n}+h f\left(y_{n}, t_{n}\right), t_{n+1}\right)\right) \tag{1}
\end{equation*}
$$

with $t_{n+1}=t_{n}+h, h>0$.
(a) 1.5 Write down the formula for the Newton iterations for finding y_{n+1} in Equation (1). The method is explicit, so that formula for the Newton method is the same equation. (1.5 pt)
(b) 4 Assume $f(y, t)=a y, a<0$. Find $h_{\text {crit }}$ such that $y_{n} \rightarrow 0$ for $h<h_{\text {crit }}$.

First (1.5 pt)

$$
y_{n+1}=y_{n}+\frac{h}{2}\left(a y_{n}+a\left(y_{n}+h a y_{n}\right)\right)=\left(1+a h+(a h)^{2} / 2\right) y_{n}
$$

For A-stability, we then need (1 pt):

$$
\left(1+a h+(a h)^{2} / 2\right)<1
$$

what is equivalent to (1.5 pt):

$$
1+a h / 2<0 \Leftrightarrow h<-2 / a=h_{\text {crit }}
$$

(c) 3.5 It can be shown that for the method presented above it holds:

$$
\left|y\left(t_{n+1}\right)-y_{n+1}\right|=C h^{3}, C>0
$$

List the advantages and disadvantages of method (1) compared to Forward Euler and Midpoint methods.
Compared to Forward Euler, this methods is second order accurate ($\mathbf{0 . 5} \mathbf{~ p t}$) and and it is also explicit ($\mathbf{0 . 5} \mathbf{~ p t}$), and the stability limit for h is the same as for Forward euler ($\mathbf{0 . 5} \mathbf{~ p t}$). The increased order comes at the price of one additional evaluation of the function (0.5 pt). Compared with Midpoint, both are second order accurate ($0.5 \mathbf{p t}$) but Midpoint is implicit, therefore potentially more expensive ($\mathbf{0 . 5} \mathbf{~ p t}$), but midpoint is unconditionally stable for linear problems (0.5 pt).

